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ABSTRACT 
FEM has been applied to obtain the 3-dim. eigenmode of the rectangular resonant cavity. The vector Helmholtz 

equation has been analysed for the resonant field strength in homogeneous media. An eigen-equation has been 

constructed from element equations basing on tangential edges of the tetrahedra element. This equation made up of 

two square matrices associated with the curl-curl form of the Helmholtz equation. To obtaine the more stable result, 

the equation was treated with the shift-invert strategy. By performing Krylov-Schur iteration loop on the eigen-

equation, the matrix has been transformed into the Schur form. Eigen-values have been determined from diagonal 

elements of the Schur matrix. Eigen-modes were determined from the unitary similar transforming matrix of Krylov-

Schur iteration loop. Eigen-pairs as a result have been revealed visually in the schematic representations. 
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     INTRODUCTION 
Usually, physical property of the resonant cavity would be determined depending on its shape. Shape of the resonant 

cavity influence the characteristics of the electromagnetic field in it. Shape of the resonant cavity is to be designed 

according to its applying purpose. Eigenmode represents a significant feature of the resonant cavity. Knowledge about 

eigenmode is one of the most important thing in designing the resonant cavity. Acquiring information about the eigen 

property is indispensable to make more advanced products. In most cases, infinite numbers of the discret eigen pair 

are formed in the resonant cavity. The theoretical analysis of the eigenmode is possible. However, solving the equation 

involves a difficulty. Especially, the 3-dim.(dimensional) resonant cavity make the complex eigen-pairs which can 

not be easily identified even in the simple geometric strucutre. So, the numerical analysis is required to understand 

the properties of the specific eigenmode. It would be resonable to study various eigen-pairs for the resonant cavity 

using the more confidential numerical algorithm as like FEM(Finite Element method). Based on FEM, the matrix 

eigen equation can be established from the vector Helmholtz equation. For a three-dimensional problem, the number 

of variables increases drastically compared with those for a two-dimensional problem. Hence it is not economical to 

use a generalized eigenvalue solver. Krylov-Schur iteration method has been known as one of the most important and 

actively developing algorithms for calculating the huge dimensional eigen-problems[1][2]. Previously, we have 

studied on the eigen-properties of 2-dim. waveguides of various forms using Krylov-Schur iteration method[3][4]. 

And the eigen-pairs of the 3-dim. cylindrical resonant cavity were also obtained using the same algorism[5]. From 

these studies, it could be recognized ones again the prominent ability of Krylov-Schur algorithm in calculating the 

large scale and non-symmetric eigen-problems. In this study, Krylov-Schur algorithm the same as  previously studying 

has been applied to a 3-dim. resonant cavity of the rectangular shape. The eigen-equation were constructed basing on 

FEM. The mesh element was simple tetrahedron and the shape functions were constructed with constant tangential 

edge vectors. To obtaine the more stable result, the equation was treated with the shift-invert strategy. The Krylov-

Schur algorithm was carried out on this equation to obtaine the eigen mode characterizing the wave properties of the 

cavity. As the results, the spectra for each eigen-pairs have been visualized with the schematic representations as like 

the previous study. 

 

FINITE ELEMENT FORMULATION 
The following description for calculating the eigen-modes is the same as describing in reference [5]. The formulation 

can be followed by using either the �⃗�  or �⃗�  feld. For a convenience of calculation, only �⃗�  would be discussed. The 
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vector Helmholtz equation would be used in determining the wave property of the resonant cavity. It is described as 

following equation [6] [7] 

∇⃗⃗ × (
1

𝜇𝑟
∇ × �⃗� ) − 𝑘2𝜀𝑟�⃗� = 0                                                           (1) 

Where k is the wave number and, for �⃗� (electric field strength), 𝜇𝑟(relative permeability μ/𝜇𝑜), 𝜀𝑟(relative permittivity 

ε/𝜀𝑜  ). The eigen-equation is constructed from FEM basing on the tetrahedral elemental mesh. The rectangular 

resonant cavity and the tetrahedral mesh is shown in the Fig.1. In the calculation, boundaries of the cavity have been 

assumed to be PEC(perfect electric conductor). Hence,  for the TM and normal derivative  for the TE cases may  vanish 

at the boundary.  

The Galerkin method of weighted residual has been used to construct a linear equation[6][7][8]. The equation resulting 

for this method is given as following 

∭
1

𝜇𝑟

(∇⃗⃗ × �⃗� ) ∙ (∇⃗⃗ × �⃗� )𝑑𝑉 = 𝑘𝑜
2𝜀𝑟 ∭�⃗� ∙ �⃗� dV                        (2) 

where �⃗�  is a weighting function. To avoid the spurious solution attributed to the lack of enforcement of divergence 

condition for �⃗� , basis functions have been constructed with constant tangential edge vectors �⃗⃗⃗� 
𝑚of the tetrahedral 

element 

�⃗⃗⃗� 
𝑚 = 𝑙𝑚(𝑁𝑚1∇⃗⃗ 𝑁𝑚2 − 𝑁𝑚2∇⃗⃗ 𝑁𝑚1),     𝑚 = 1, 2, 3, 4, 5, 6.         (3) 

In this representation, 𝑁𝑚1and 𝑁𝑚2 are the simplex coordinates associated with the 1st and 2nd nodes connected by 

the edge m, and 𝑙𝑚 is the length of edge m. The simplex coordinates for a given elementary mesh are 

𝑁𝑛 = 𝑎𝑛 + 𝑏𝑛𝑥 + 𝑐𝑛𝑦 + 𝑑𝑛z,      n = 1, 2, 3, 4                             (4) 
And the gradient of any coordinate is 

∇⃗⃗ 𝑁𝑛 = 𝑏𝑛�̂� + 𝑐𝑛�̂� + 𝑑𝑛�̂�                                                                   (5) 
The simplex coefficients are calculated by inverting the coordinate matrix 

[

𝑎1 𝑏1

𝑎2 𝑏2

𝑐1 𝑑1

𝑐2 𝑑2

𝑎3 𝑏3

𝑎4 𝑏4

𝑐3 𝑑3

𝑐4 𝑑4

] = [

1 1
𝑥1 𝑥2

1 1
𝑥3 𝑥4

𝑦1 𝑦2

𝑧1 𝑧2

𝑦3 𝑦4

𝑧3 𝑧4

]

−1

                                (6) 

Where (𝑥𝑛, 𝑦𝑛 , 𝑧𝑛) is a rectangular coordinate of the node n of the tetrahedral mesh. For each elemental mesh, edges 

and nodes are related with each other as illustrated in Fig.2.  

Figure 1 The rectangular cavity and tetrahedral mesh. 

Figure 2 The tetrahedral element mesh 
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The electric field strength in a single tetrahedral element is represented with the tangential edge vector  as 

�⃗� = ∑ 𝑒𝑚�⃗⃗⃗� 
𝑚

𝑚=6

𝑚=1

                                                                                 (7) 

The six unkown parameters 𝑒1, … , 𝑒6  are associate with tangential edges of the tetrahedral elemental mesh. 

Substituting equation (7) into equation (2), the eigen-equation of one tetrahedral element can be written in matrix form 

as 
[𝑆𝑒𝑙][𝑒] = 𝑘2[𝑇𝑒𝑙][𝑒]                                                                        (8) 
where the element matrics are given by 

[𝑆𝑒𝑙] = ∭
1

𝜇𝑟

(∇⃗⃗ × �⃗⃗⃗� ) ∙ (∇⃗⃗ × �⃗⃗⃗� )𝑑𝑉                                         (9) 

[𝑇𝑒𝑙] = 𝜀𝑟 ∭�⃗⃗⃗� ∙ �⃗⃗⃗� dV                                                             (10) 

The evaluation of the element matrix requires the curl of each basis function �⃗⃗⃗� 
𝑚 

∇⃗⃗ × �⃗⃗⃗� 
𝑚 = ∇⃗⃗ × 𝑙𝑚(𝑁𝑚1∇𝑁𝑚2 − 𝑁𝑚2∇𝑁𝑚1) 

              = 2𝑙𝑚 ∇⃗⃗ 𝑁𝑚1 × ∇⃗⃗ 𝑁𝑚2 

              = 2𝑙𝑚((𝑐𝑚1𝑑𝑚2 − 𝑐𝑚2𝑑𝑚1)�̂� + (𝑏𝑚2𝑑𝑚1 − 𝑏𝑚1𝑑𝑚2)�̂� + (𝑏𝑚1𝑐𝑚2 − 𝑏𝑚2𝑐𝑚1)�̂�) 

               ≡ 2𝑙𝑚�⃗⃗� 𝑚                                                                            (11) 
And from itFrom the equation  

[𝑆𝑒𝑙]𝑚𝑛 = 4𝑙𝑚𝑙𝑛𝑉(�⃗⃗� 𝑚 ∙ �⃗⃗� 𝑛)                                                           (12) 

To obtain the element matrix [𝑇𝑒𝑙], the scalar product between �⃗⃗⃗� 
𝑚 and  �⃗⃗⃗� 

𝑛 may be calculated as 

�⃗⃗⃗� 
𝑚 ∙ �⃗⃗⃗� 

𝑛 = 𝑙𝑚(𝑁𝑚1�⃗� 𝑁𝑚2 − 𝑁𝑚2�⃗� 𝑁𝑚1) ∙ 𝑙𝑛(𝑁𝑛1�⃗� 𝑁𝑛2 − 𝑁𝑛2�⃗� 𝑁𝑛1)                                                 (13) 

               = 𝑙𝑚𝑙𝑛[𝑁𝑚1𝑁𝑛1𝜑𝑚2,𝑛2 − 𝑁𝑚1𝑁𝑛2𝜑𝑚2,𝑛1 − 𝑁𝑚2𝑁𝑛1𝜑𝑚1,𝑛2 + 𝑁𝑚2𝑁𝑛2𝜑𝑚1,𝑛1]            (14) 

Wher 𝜑𝑚𝑖,𝑛𝑗 = ∇⃗⃗ 𝑁𝑚𝑖 ∙ ∇⃗⃗ 𝑁𝑛𝑗 = 𝑏𝑚𝑖𝑏𝑛𝑗 + 𝑐𝑚𝑖𝑐𝑛𝑗 + 𝑑𝑚𝑖𝑑𝑛𝑗 

In the process of [𝑇𝑒𝑙] calculation, following volume intefration for 3-Dim. Simplex coordinates may be used[9] 

∭(𝑁1)
𝑖(𝑁2)

𝑗(𝑁3)
𝑘(𝑁4)

𝑙𝑑𝑉 =
3! 𝑖! 𝑗! 𝑘! 𝑙!

(3 + 𝑖 + 𝑗 + 𝑘 + 𝑙)!
𝑉                                                                       (15) 

These integrals can be simply summarized in the following matrix form 

[𝑀𝑖𝑗] =
1

𝑉
∭𝑁𝑖𝑁𝑗𝑑𝑉 =

1

20
[

2 1
1 2

1 1
1 1

1 1
1 1

2 1
1 2

]                                                                                           (16)   

From the equations (13), (14) and (16), the element matrix can be written as following 

[𝑇𝑒𝑙]𝑚𝑛 = 𝑉𝑙𝑚𝑙𝑛[𝜑𝑚2,𝑛2𝑀𝑚1,𝑛1 − 𝜑𝑚2,𝑛1𝑀𝑚1,𝑛2
− 𝜑𝑚1,𝑛2𝑀𝑚2,𝑛1

+ 𝜑𝑚1,𝑛1𝑀𝑚2,𝑛2]                       (17) 

These element matrices are assembled over all tetrahedral elements in the 3-Dim. cavity to obtain a global eigen-

matrix equation. 
[𝑆][𝑒] = 𝑘2[𝑇][𝑒]                                                            (18) 
 

RESULTS AND DISCUSSION 
In this study, the eigen-pairs of the rectangular resonant cavities have been investigated with Krylov-Schur iteration 

method. For a convenience of the calculation, the lateral surface of the cavity was assumed to be coated with the 

perfectly conducting metal. The space occupied by the cavity was supposed to be linear and homogeneous. So, it has 

not been worried any leakage and anisotropic field variation in the calculation.  For FEM calculation, the mesh was 

constructed with the tetrahedral structure as can be seen in Fig.1. The tangential edge vectors were related with the 

vertics of all elemental tetrahedrons as illustrated in Fig.2. Here, the definition of the tetrahedral volume follow the 

right handed spiral rule. If the vertices of a tetrahedron following the right hand rule, the volume is for positive value 

and reverse for negative. The eigen-equation of the matrix form eq.(18) was established basing on the these 

tetrahedrons. As mentioned in the previous study, it has been well known that the Krylov-Schur iteration method is 

the most reliable technique for finding the prominent eigen-modes. The method would be more efficiently 

implemented in finding specific eigen-pairs by performing the shift-invert strategy as following[10] 

λ[e] =
[𝑇]

[𝑆] − 𝜎[𝑇]
[𝑒] = [𝑀][𝑒]                                    (19) 

where λ =
1

𝑘2−𝜎
. In this study, the relative permeability and relative permittivity was assumed to be 𝜇𝑟 = 1 and 𝜀𝑟 =

1 respectively for a convenience.The sparsity and symmetry of the eigen-equation would be lost, but by this strategy 
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the convergent rate may be promoted at the specific value σ. The Krylov-Schur iteration method has been performed 

on this square matrix [M]. By this iteration method, the matrix [M] has been transformed into a Schur matrix. The 

eigen-modes are the column vectors of the similar transforming matrix which convert the square matrix [𝑀] to a Shure 

form. The eigen-values are calculated by converting each diagonal component of the Schur matrix into values 𝑘2 =
1

𝜆
− 𝜎  reversing the shift-invert strategy. As a result, the eigen-pairs are schematicaly represented in the fig. 3. The 

wave numbers calculated from shift-invers relation were written in the blanket under each spectrum. As can be seen 

in the spectra, each eigenmode is shown the complicated configuration. However, each of the spectra show the uniform 

electric field strength oriented to a specific direction. The specific mode type may be determined readily by 

investigating the direction of the electric field strength. These mode type are shown under each spectrum 

accompanying with a eigenvalues value.  

 

 

CONCLUSION 
The 3-dim. eigen-equation of the rectangular resonant cavity has been constructed by FEM. Eigen-pairs have been 

calculated by applying the Krylov-Schur iteration method to the shift-invert matrix. As a result, the shift-invert matrix 

was transformed in the Schur matrix. The wave numbers were determined by reversing the shift-invert strategy for 

the diagonal elements of the Schur matrix. The eigen-modes were obtained from the column vectors of the similar 

transforming matrix which convert the eigen-equation to a Shure form. 
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